L' Hospital's Rule II
\nLet I be an interval and t.g are differentiable
\nfunctions on I such that
$$
g' \omega \neq 0
$$
. Suppose $\lim_{x\to a} g \omega = \frac{1}{100}$
\nIf $\lim_{x\to a} \frac{f(x)}{g(x)} = L$ where $L \in \mathbb{R} \cup \{1\} \cup \{-1\}$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.
\nIf:
\nSuppe LéIR. Assume $L > 0$. Fix $\epsilon > 0$. Assume $\epsilon = 1$
\nNote that $\frac{f(x)}{g\omega} = \frac{f(x) - f(y)}{g(\omega)} + \frac{f(y)}{g(x)}$
\n $= \frac{g(x) - g(y)}{g(x)} + \frac{f(x)}{g(x)} + \frac{f(y)}{g(y)}$
\n $= (1 - \frac{g(y)}{g(x)} + \frac{f(x) - f(y)}{g(x)} + \frac{f(y)}{g(x)}$

Since $\int_{x\to a}^{x} \frac{f(x)}{g(x)} = L$, there exists $\delta_1 > 0$ such

Since
$$
\lim_{x\to a} \frac{1}{b(x)} = L
$$
, there exists $a_1 > 0$ such that for any $x \in L$ satisfying $a < x < at \int_{L}$
\n $\left| \frac{f(x)}{b-a} \right| = c$

$$
\left|\frac{f(x)}{g(x)}-L\right| < \epsilon
$$

Now we fix $f(x)$ $g(\epsilon(a, a+\delta,))$

For any
$$
x \in (a, y)
$$
, by Rule's theorem,
\n $g(x) \neq g(y)$ since $g' \neq o$ on I.
\nBy $(andg' \in M \vee T)$, *there exists* some
\n $(E(x, y) \in M \vee T)$, *there exists* some
\n $\frac{f(w - f(y))}{\frac{f(w - f(y))$

Now we have proved
$$
lim_{x\to a^+} \frac{f_0}{f(x)} = L
$$
 when $L > 0$.
\nSimilarly, we can prove $lim_{x\to a^-} \frac{f(x)}{g(x)} = L$ and
\nthe cases $L < 0$ or $L = 0$.

6. Suppose
$$
L = \infty
$$
.
 Note that $\frac{f(x)}{g(x)} = (1 - \frac{g(y)}{g(x)}) \frac{f(x) - f(y)}{g(x) - g(y)} + \frac{f(y)}{g(x)}$

Fix M=0
\nSince
$$
lim_{k\to a} \frac{f(x)}{f(x)} = \infty
$$
, thus exists some
\n $\int_{1}^{1} f(x) g(x) dx = x^2 + \frac{f'(x)}{f'(x)} = 0$

Then $\exists s_{2} > 0$ such that for any $a < x < a + \delta_2$, $\frac{f(y)}{g(y)} > -\frac{M}{4}$, $\frac{g(y)}{g(x)} < \frac{1}{2}$ Take $\{s: = min \}$ $y-x, \, \delta_z\}$ For any $\pi \in (a, a+\delta)$, $\frac{f(x)}{g(x)} = (1 - \frac{g(y)}{g(x)}) \frac{f(x) - f(y)}{g(x) - g(y)} + \frac{f(y)}{g(x)}$ $> \frac{1}{2} M - \frac{M}{4}$ $=\frac{M}{4}$ Therefore, $lim_{x\rightarrow a^{+}}\frac{1}{3(x)}=x$ $Similarly, we can prove $lim_{x\to a^{-}} \frac{f_{c_{x}}}{f_{c_{y}}}= \infty$$ and the case $L=-\infty$

Rook: The avgument still works when $a = \pm \infty$.

