L'Hospital's Rule II
Let I be an interval and t, g are differentiable
functions on I such that
$$g'(x) \neq 0$$
. Suppose $f_{x>a} g'(y) = \pm \infty$.
If $f_{x>a} \frac{f'(x)}{g'(x)} = L$ where $L \in IR \cup [\pm \infty]$, then $f_{x>a} \frac{f_{xy}}{g'(y)} = L$.
Pf:
Note that $\frac{f(x)}{g'(y)} = \frac{f(x) - f(y)}{g'(y)} + \frac{f(y)}{g'(y)}$
 $= \frac{g(x) - g(y)}{g'(x)} \frac{f(x) - f(y)}{g'(y)} + \frac{f(y)}{g'(y)}$
 $= (1 - \frac{g'(y)}{g'(y)}) \frac{f(x) - f(y)}{g'(y)} + \frac{f(y)}{g'(y)}$

Since $\lim_{x \to a} \frac{f(x)}{g(x)} = L$, there exists $S_1 > 0$ such

$$\left|\frac{f'(x)}{g'(x)} - L\right| < \varepsilon .$$

Now we fix y E(a, a+S,).

For any
$$x \in (a, y)$$
, by Rolle's Theorem,
 $g(s) \ddagger g(y)$ since $g' \ddagger o$ on I .
By Cauchy's MVT, there exists some
 $c \in (x, y)$ such that
 $\frac{f(w - f(y))}{g^{(u)} - g(y)} = \frac{f(c)}{g(c)} \in (L - \varepsilon, L + \varepsilon)$.
Since $\lim_{x \neq a} g^{(x)} = \omega_{0}$, then $\lim_{x \neq a} \frac{g^{(y)}}{g^{(x)}} = \lim_{x \neq a} \frac{f(y)}{g^{(y)}} = 0$
Then there exists $\delta_{2} > 0$ such that
 $f(x) = \max_{x \neq a} x \in I$ satisfying $a \le x \le a + \delta_{2}$,
 $\left| \frac{\delta(y)}{g^{(y)}} \right|, \left| \frac{f(y)}{g^{(x)}} \right| = \varepsilon$.
Take $\delta := \min_{x \neq a} (y - x, \delta_{2})$.
Thus for any $x \in I$ satisfying $a \le x \le a + \delta$
 $(I - \varepsilon)(L - \varepsilon) - \varepsilon < (I - \frac{\delta(y)}{\delta^{(x)}}) \frac{f(w - f(y))}{\delta^{(x)}} + \frac{f(y)}{\delta^{(x)}} < (I + \varepsilon)(L + \varepsilon) + \varepsilon$
i.e. $L - (L + 2 + \varepsilon)\varepsilon = \frac{f(x)}{\delta^{(x)}} < L + (L + 2 + \varepsilon)\varepsilon$

Now we have proved
$$\lim_{x\to a^+} \frac{f_{\alpha}}{g_{\alpha}} = L$$
 when $L > 0$.
Similarly, we can prove $\lim_{x\to a^+} \frac{f_{\alpha}}{g_{\alpha}} = L$ and
the cases $L < 0$ or $L = 0$.

• Suppose
$$L = \infty$$
.
Note that $\frac{f(x)}{g(x)} = \left(1 - \frac{g(y)}{g(x)}\right) \frac{f(x) - f(y)}{g(x) - g(y)} + \frac{f(y)}{g(x)}$

Fix
$$M = 0$$

Since $\lim_{k \to a} \frac{f(\omega)}{g(\omega)} = \infty$, there exists some
 $S_1 = 0$ such that $\frac{f'(\omega)}{g(\omega)} > M$ for any $x((a, a+b_1))$
Fix $y \in (a, a+S)$.
By Rolle's Theorem and Cauchy's $M \vee T$,
for any $x \in (a, y)$, there exists $C \in (x, y)$ s.f.
 $\frac{f(x) - f(y)}{g(u) - g(y)} = \frac{f'(u)}{g'(u)} > M$
Since $\lim_{k \to a} g(w) = \infty$, $\lim_{k \to a} \frac{f(y)}{g(u)} = \lim_{k \to a} \frac{g(y)}{g(u)} = 0$

Then I \$2 >0 such that for any $a < x < a + \delta_2$, $\frac{f(y)}{g(y)} > -\frac{M}{4}$, $\frac{g(y)}{g(x)} < \frac{1}{2}$ Take 8: = min, 1y-x, 82]. For any XE(a, at S), $\frac{f(x)}{g(x)} = \left(1 - \frac{g(y)}{g(x)}\right) \frac{f(x) - f(y)}{g(x) - g(y)} + \frac{f(y)}{g(x)}$ > - M - M = M 4 Therefore linn the = 10 Similarly, we can prove lim for =00 and the case L=-00

Rock: The argument still works when a = ± 00.

Examples
lim lix x > 20 X
Note that $\lim_{x \to \infty} x = 0$, $\lim_{x \to \infty} \frac{(\ln x)'}{x'} = \lim_{x \to \infty} \frac{1/x}{1} = 0$
By L'Hospital's Rule, $\lim_{x \to \infty} \frac{\ln x}{x} = 0$
$\lim_{x \to 0^{-x}} e^{-x} x^2$
Lot $f(x) = \chi^2$ and $g(x) = e^{\chi}$
Then $f'(x) = 2x$ and $g'(x) = e^{x}$.
$f'(x) = 2$ and $g''(x) = e^{X}$.
Thus $\lim_{x \to 0} e^{-x} x^2 = \lim_{x \to 0} \frac{2x}{e^x} = \lim_{x \to 0} \frac{2}{e^x} = 0$
lim Insinx X->0 lnx
Lat fix,= lusinx and gix,= lux
Then $f'(x) = \frac{\cos x}{\sin x}$ and $g'(x) = \frac{1}{x}$
Thus $\lim_{x \to 0} \frac{\lim_{x \to 0} \frac{1}{2}}{\ln x} = \lim_{x \to 0} \frac{\cos x / \sin x}{1/x} = \lim_{x \to 0} \frac{x \cos x}{\sin x}$
$=(\lim_{x \to \infty}) \lim_{x \to \infty} (\sigma x) =$